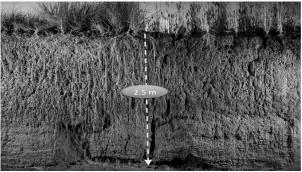
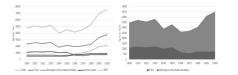
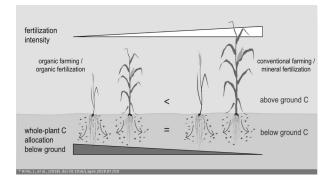


Nitrogen: Build or Burn SOM?


.integratedsoils.com ♥ @integratedsoils

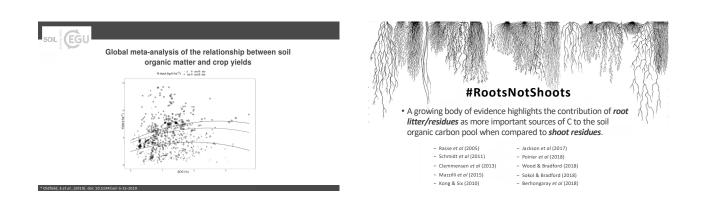
180 160 140

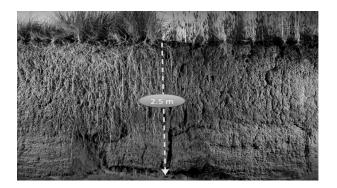

20

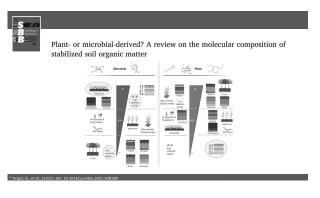

sustainability

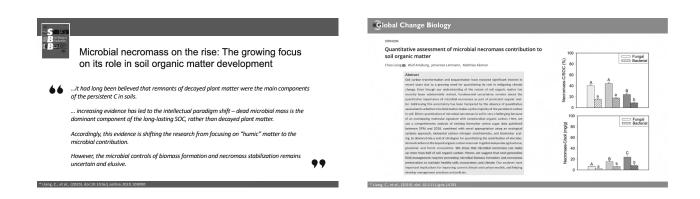
* Carranza-Gallego, G., et al., (2018). doi: 10.3390/su10103724

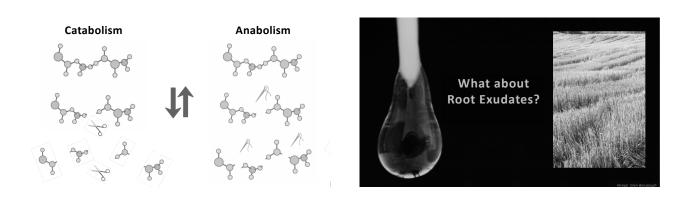
Modern Wheat Varieties as a Driver of the Degradation of Spanish Rainfed Mediterranean Agroecosystems throughout the 20th Century








Global meta-analysis of the relationship between soil organic matter and crop yields


butterat. Realism, productive soils are necessary to sumitably intensity agreedure to increase yields while imitating environmental harm. To conserve and regenerat productive soils, the need to minimian and half of equation matter (SOM) has received considerable attention. Although SOM is considered by to sublife the second second second considerable attention. Although SOM is considered by the soil health. There is a need to quarking this relationship to test a general framework for how soil management could potentiation takes to crear yield potential of the size and the size of the

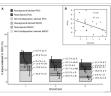
New Phytologist

Research 💭

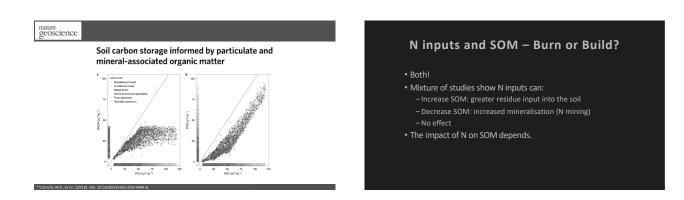
ands. 4242 Fill

Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon

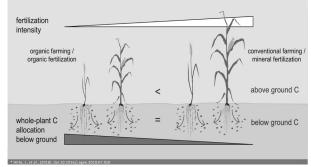
Noah W. Sokol¹ (), Sara. E. Kuebbing^{1,2}, Elena Karlsen-Ayala¹ and Mark A. Bradford¹

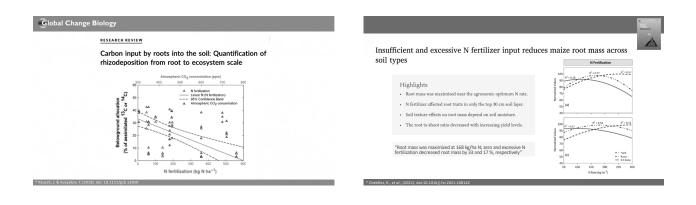

trenus, Pitolough, PA 15360, USA

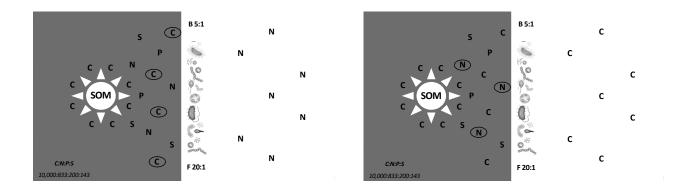
Summary Solid regards cachen (BAC) is privately formed from plant input, but the relative cachen (BD) is Solid regards cachen (BAC) is privately formed from plant input, but the relative cachen (BD) are poolly understood. Recent theory suggests that lineng root inputs seent a disproperiorate influence on SCC termation, but there final studies have equilibre there this by separately tracking lineng root is littler inputs as they more through the soil flood web and into distinct or multiple years. The second studies are the plant input to the second studies of the other multiple years in a second studies of the thermore, we demonstrate that living root inputs are more efficiently anablacted by the soil microbial community or north of the microbial SCC pool diabet the in inputs intercells of the solution of the second studies of the second studies of the second studies of the second studies of the solution of the second studies of the second studies beth store-cycling, microbial studies of the second studies of the second studies beth store-cycling interval that living root studies are second efforted matabasted by the soil microbial community or notice that microbial studies the second studies of the in avia the studies of the solution of the second studies of the second studies the second second and the inputs of the solution of the second studies of the second studies of the second studies the second studies of the solution of the second studies of the second studies of the second studies the second studies of the second studies of the second studies of the second studies of the second studies the second studies of the seco

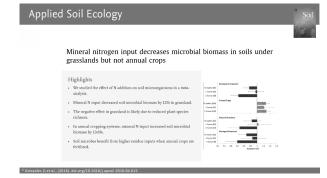

Science Advances

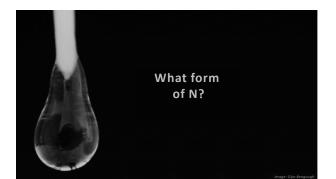
Plant rhizodeposition: A key factor for soil organic matter formation in stable fractions

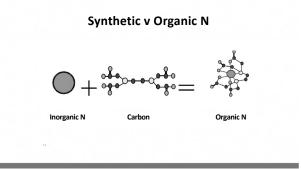

Seil organic carbon formation remains poorly understood despite is importance for human fivelihoods. Uncertainties remain for the statistic contributions of aboveground, not, and factilitoods. Uncertainties remain for the statistic contribution of aboveground, not, and factorism. Carboling and famous with the holps tasks ratifiest, we quantified FOC and MACG formation efficiencies (H of C-longas incorporate find to each fraction). We found that incolegoation inspect have the highest MACG formation filtering (HgA) as compared to root (HS) or aboveground inputs (F)), in addition, rhisologoation unexpectedly reduced POC formation, likely sectore it increased decomposition rate of one VOC. Conversely, or biomass inputs have the highest MCC formation efficiency (FIs). Therefore, rhisologoation protections.





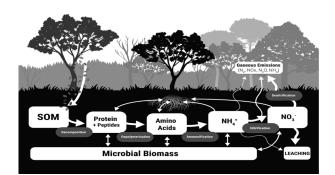

Effects of nitrogen enrichment on soil microbial characteristics: From biomass to enzyme activities

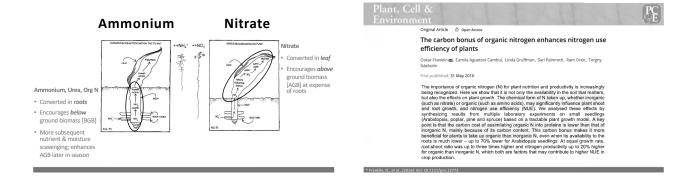

ODERM

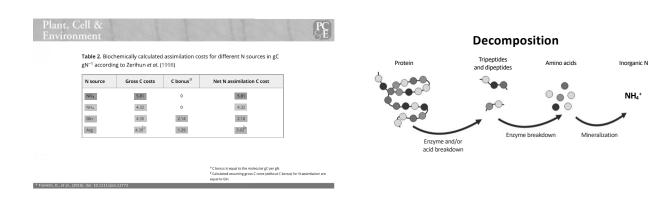

ABSTRACT

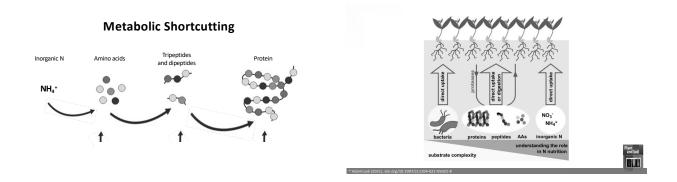
2020) doi ore/10 1016/i i

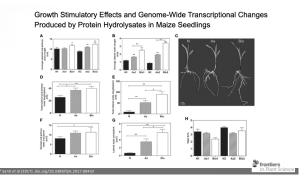
		-		_	
Soil microbes play an important role in ecosystem processes, including carbon (C) and nutrient cycling. Nitrogen	Total PLFA -	- H		239	
(N) enrichment is known to affect soil microbes, but whether other factors affect the impact of N enrichment on	MBC -	**(-		720	
soil microbial biomass and composition and extracellular enzyme activities (EEAs) remains unclear. In this	MBN -	H		676	
study, to evaluate the responses of soil microbial characteristics, including microbial biomass, microbial com-	MBC:MBN -			176	
munity composition and EEAs to N enrichment, we conducted a meta-analysis using 1248 global data series from	Bacteria -			200	
120 published papers at 125 sites that cover five types of biomes worldwide. The results showed that N en-	Fungi -			209	
richment significantly decreased microbial biomass carbon (MBC) and arbuscular mycorrhizal fungi (AMF)	Actinomycete			157	
across all studies. In addition, the responses of soil microbes depended on the N enrichment rate, and different	Fungi:Bacteria	H		136	
thresholds (the N rate at which the microbial response changes) of MBC (64.85 kg N ha-1 year-1), microbial	AMF -	**		67	
biomass nitrogen (MBN, 57.00 kg N ha-1 year-1), bacterial biomass (106.75 kg N ha-1 year-1), fungal biomass	B-glucosidase -			72	
(70.50 kg N ha ⁻¹ year ⁻¹), β-N-acetyl-glucosaminidase (NAG) (83.27 kg N ha ⁻¹ year ⁻¹) and peroxidase activity	NAG -			67	
(19.75 kg N ha-1 year-1) were observed under N enrichment. Moreover, the responses of soil microbes to N	Peroxidase -	***!-		57	
enrichment were affected by biome type, N enrichment rate and type, experimental duration, precipitation and	Urease -	**		83	
soil type. Furthermore, the results showed that N enrichment significantly altered soil physical and chemical	Phosphatase -		-1+++	75	
properties, which may affect soil microbial biomass and composition under N enrichment. Our findings highlight	MR -		H	106	
that N enrichment decreased the soil microbial biomass and showed a significant effect on soil EEAs across all			-	_	
terrestrial ecosystems, with more pronounced effects observed with increasing N rate and duration.	4	0.2 -0.1 0	0 0.1 0	0.2	
		Response ratios			

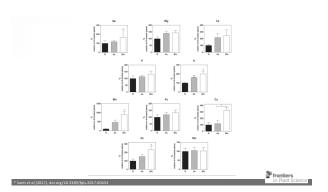




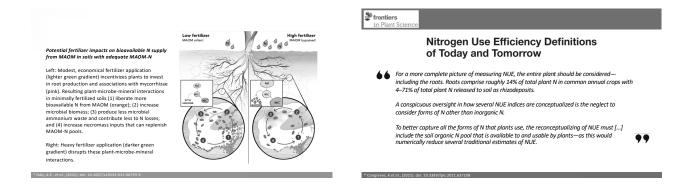


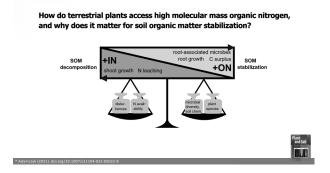

Soil Organic N

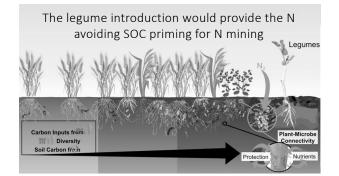

- Soil organic matter (95% of total soil N)
- Proteins
- Peptides
- Amino acids
- Amino sugars





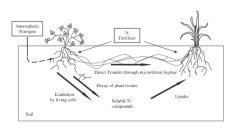




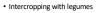


Sources of Organic N

- Crop residue
- Roots
- Root exudates
- Microbial metabolites
- Dead organisms microbes, invertebrates etc
- Organic amendments compost, manures etc



Mark Lea Green/Ares_Farm



Integrated N Management

- Carbon based inputs
- Intercrop with legumes
- Organic amendments
- Livestock Integration
- Foliar N
- Synergistic nutrients
 Biofertilisers N fixers
- Plant breeding for NUE

In Summary

- Soil organic C & N dynamics are complex many knowledge gaps
- Emerging paradigm on soil C is challenging existing ideas watch this space
- N inputs should be optimised as best possible excess N on roots and SOM?
- C-based additions to artificial N inputs creates 'organic N'
 Use organic amendments where possible
- ose organie americamento im

