
YES, REGENERATIVE AGRICULTURE WORKS. WE HAVE PROOF!

Garry Richards Bangor, SK

Farming is a commodity business

The only producers that will be consistently profitable will be low input producers. The average price of a commodity will usually settle out to be the breakeven price of the average cost producer.

If we keep doing what we're doing we're going to keep getting what we're getting. -Steven Covey

Side of a road

Species

Intercrop oats, peas, & forbs

20 + Species

"The wealth is in the land"

The good old days-Native prairie Cropland with perennial pasture

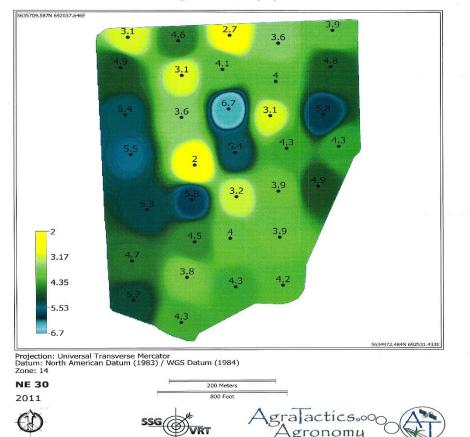
"As long as you spray for weeds you will have weeds."

-Allan Savoury

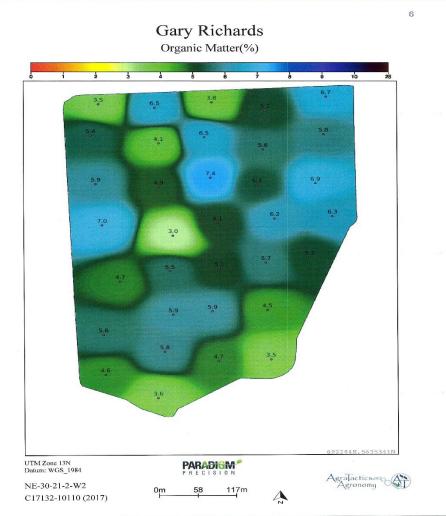
What is more important for the profitability of a farm, crop yield or organic matter?

Regenerative corn fields had 29% lower grain production but 78% higher profits over traditional corn production systems.

Profit was positively correlated with the particulate organic matter of the soil, not yield.


Claire LeCanne and Jonathan Lundgren

Soil Organic Matter NE 30 21 2 2


SOM=4.3%

Gary Richards

Organic Matter (%)

SOM=5.3%

1-844-273-2005 contact@quoruml.com www.quoruml.com

<u>Chemistry</u>

Haney	B - ppm	Mg - ppm	P - ppm	K - ppm	Ca - ppm	Mn - ppm	Fe - ppm	Cu - ppm	Zn - ppm	Mo - ppm
307	1.173	275.702	45.311	113.810	591.517	28.542	381.003	1.469	10.045	0.039
LEGEND										
LOW		pН	6.56							
AVERAGE		тос	299.0125	Total Orga	nic Carbor	(PPM)		Ca:Mg	2:1	
OPTIMAL		IC	112.5215	Total Inorg	ganic Carbo	on (PPM)				
VERY HIGH		тс	411.534	Total Carb	on (Organi	ic + Inorgan	nic) (PPM)			
TNE	B - ppm	Mg - ppm	P - ppm	K - ppm	Ca - ppm	Mn - ppm	Fe - ppm	Cu - ppm	Zn - ppm	Mo - ppm
307	5.043	1775.357	387.835	826.495	3187.320	138.138	3217.555	8.078	22.332	0.110

Your soils are low in available manganese, however there is a large reserve of manganese in the soil as indicated by the total nutrient analysis (TNE). The soil pH is acidic with high resistance to pH changes. The soil TOC is at 299 ppm which is above our minimum benchmark of 200 ppm along with high IC. It indicates high buffering capacity of the soil. A small addition of calcium can help keep the Ca to Mg ratio at 4:1. Please do not add any more Phosphates and Potassium as it may create negative downstream effects.

*The averages were based upon samples we have received so far and have been assessed as a reasonably healthy well balanced soil based on the client's inputs on management of the field. **The comments are based upon the available information from research articles and journals. 3. Based on available data on nitrogen cycle bacteria.

Results

CALCULAR OF

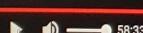
<u>Corn monocultures</u>
 >12,358 invertebrates/m²

Interseeded corn
 ▶17,614 invertebrates/m²

42.5% increase

Watch later Share

MORE VIDEOS


Case study 2

- Study in partnership with Understanding Ag and General Mills
- Soil invertebrate sampling on 50 Canadian farms
 - Farm characteristics
 - No till
 - Cover crops
 - Polycultures
 - Livestock integration
 - Interseeding

WHE DISHER General Mills^e Making Food People Love ve Agriculture Program 246 total species 32,530 inverts/m²

Play (k)

Watch later Share Mike Bredeson

L

Play (k)

1-844-273-2005 contact@quoruml.com www.quoruml.com

<u>Chemistry</u>

Haney	B - ppm	Mg - ppm	P - ppm	K - ppm	Ca - ppm	Mn - ppm	Fe - ppm	Cu - ppm	Zn - ppm	Mo - ppm
307	1.173	275.702	45.311	113.810	591.517	28.542	381.003	1.469	10.045	0.039
LEGEND										
LOW		pН	6.56							
AVERAGE		тос	299.0125	Total Orga	nic Carbor	(PPM)		Ca:Mg	2:1	
OPTIMAL		IC	112.5215	Total Inorg	ganic Carbo	on (PPM)				
VERY HIGH		тс	411.534	Total Carb	on (Organi	ic + Inorgan	nic) (PPM)			
TNE	B - ppm	Mg - ppm	P - ppm	K - ppm	Ca - ppm	Mn - ppm	Fe - ppm	Cu - ppm	Zn - ppm	Mo - ppm
307	5.043	1775.357	387.835	826.495	3187.320	138.138	3217.555	8.078	22.332	0.110

Your soils are low in available manganese, however there is a large reserve of manganese in the soil as indicated by the total nutrient analysis (TNE). The soil pH is acidic with high resistance to pH changes. The soil TOC is at 299 ppm which is above our minimum benchmark of 200 ppm along with high IC. It indicates high buffering capacity of the soil. A small addition of calcium can help keep the Ca to Mg ratio at 4:1. Please do not add any more Phosphates and Potassium as it may create negative downstream effects.

*The averages were based upon samples we have received so far and have been assessed as a reasonably healthy well balanced soil based on the client's inputs on management of the field. **The comments are based upon the available information from research articles and journals. 3. Based on available data on nitrogen cycle bacteria.

Account No.:	105
Invoice No.:	
Date Recd:	7/13/2021
Date Repd:	7/15/2021

Name:	KATHY RICHBURG
Company:	UNDERSTANDING AG
Address:	1908 SPRING DRIVE NW
City, State, ZIP:	FORT PAYNE, AL 35968
-	

Grower:	GARY RICHARDS/GM
Field ID:	FERTILIZED
Sample ID 1:	-
Sample ID 2:	
Sample Depth:	0-6

HANEY SOIL HEALTH ANALYSIS

		Nitrogen										Pho	sphorus		
	H3/	A Extract			H2O Extract					H3A Extract					
Lab #	Nitrate	Ammonium	Inorg. N	Total N	Org. N	Org. N:	Org. N Rel.	Org. N Res.	Avail. N	Total P	Inorg. P	Org. P	Org. P Rel	Org. P Res.	Avail, P
	ppm NO3-N	ppm NH4-N	ppm N	ppm N	ppm N	Inorg, N	ppm N	ppm N	Ibs/A	ppm P	ppm PO4-P	ppm P	ppm P	ppm P	Ibs/A
601066	22.5	1.6	24.1	47.5	23.1	0.95	13.5	9.7	67.5	10.3	6.6	3.8	1.6	2.1	18.9
Rank															

	0	ther Soil	Measure	s			Fertility								
										H3A E	xtract				
Lab #	Soil pH	Buffer pH	Soluble Salt	Excess	SoilOM	Potassium	Calcium	Magnesium	Sodium	Zinc	Manganese	Iron	Copper	Aluminum	Sulfur
180 #	1:1	Mod. WDRF	mmho/cm	Lime	% LOI	ppm K	ppm Ca	ppm Mg	ppm Na	ppm 2n	ppm Mn	ppm Fe	ppm Cu	ppm Al	ppm S
601066	8.3	-	0.46	HIGH	6.0	130	1440	1063	48	0.03	3.5	10	0.02	16	16.23
Rank															

		Soil Health							omparis	on	Reviewer Comments
		H	20 Extract				Traditional	Haney	Differ.	Savings	
Lab #	Soil Resp.	Org. C	MAC	CN	SHC	Cover Crop	N	N	N	N	
100 1	ppm CO2-C	ppm C	%	5	SHC	Suggestion	Ibs/A	lbs/A	lbs/A	\$/A	
601066	47.0	323	14.6	13.97	13.47	40% Legume 60% Grass	40.5	67.5	27.0	17.30	
Rank											

	Intende	ed	N Cre	dits, Ib	s/A		Fertility	/ Recomn	nendati	ons, Ibs	of Requ	ired Nu	utrients p	er Acre	
Lab #	Crop	Yield Goal	Past Crop	Subsoil	Haney	N	P205	K20	s	Zn	Mg	Fe	Mn	Cu	Lime T/A

Reviewed By: Lance Gunderson

Date: 7/15/2021

Regen Ag Lab, LLC 31740 Hwy 10, Pleasanton NE 68866

Gain Ground

308-440-1681 regenaglab.com

Recommendations Provided by Regen Ag Lab, LLC

Analysis Performed by Regen Ag Lab, LLC

Account No.:	
Invoice No.:	
Date Recd:	7/13/2021
Date Repd:	7/15/2021

Name:	KATHY RICHBURG
Company:	UNDERSTANDING AG
Address:	1908 SPRING DRIVE NW
City, State, ZIP:	FORT PAYNE, AL 35968

Grower:	GARY RICHARDS/GM
Field ID:	CONTROL
Sample ID 1:	•
Sample ID 2:	
ample Depth:	0-6

HANEY SOIL HEALTH ANALYSIS

				Niti	rogen							Pho	sphorus		
	Н	3A Extract				H2O Ext	ract					H3	A Extract		
Lab#	Nitrate ppm NO3-N	Ammonium ppm NH4-N	Inorg. N ppm N	Total N ppm N	Org. N ppm N	Org. N: Inorg. N	Org. N Rel.	Org. N Res. ppm N	Avail. N Ibs/A	Total P ppm P	Inorg. P ppm PO4-P	Org. P ppm P	Org. P Rel ppm P	Org. P Res. ppm P	Avail. P Ibs/A
601067	13.9	1.8	15.7	40.9	25.0	1.58	25.0	0.0	73.3	12.5	7.7	4.8	4.1	0.7	27.2
Rank									S						

		Other Soil					Fert	tility							
										H3A E	xtract				
Lab#	Soil pH	Buffer pH	Soluble Salt	Excess	Soil OM	Potassium	Calcium	Magnesium	Sodium	Zinc	Manganese	Iron	Copper	Aluminum	Sulfur
Laut	1:1	Mod. WDRF	· mmho/cm	Lime	% LOI	ppm K	ppm Ca	ppm Mg	ppm Na	ppm Zn	ppm Mn	ppm Fe	ppm Cu	ppm Al	ppm S
601067	7.9	•	0.48	HIGH	7.3	236	2045	604	21	0.04	5.0	18	0.04	16	27.92
Rank															

			Soil H	lealth			Nitr	ogen Co	omparis	ion	Reviewer Comments
		H	20 Extract				Traditional	Haney	Differ.	Savings	
Lab#	Soil Resp.	Org. C	MAC	C:N	SHC	Cover Crop	N	N	N	N	
	ppm CO2-C	ppm C	%	CIN	SHC	Suggestion	lbs/A	lbs/A	lbs/A	\$/A	
601067	102.1	359	28.4	14.34	18.19	30% Legume 70% Grass	25.0	73.3	48.2	30.87	
Rank											

	Intende	ed	N Cre	N Credits, Ibs/A			Fertility Recommendations, Ibs of Required Nutrients per Acre									
Lab #	Сгор	Yield Goal	Past Crop	Subsoil	Haney	N	P205	K20	S	Zn	Mg	Fe	Mn	Cu	Lime T/A	
		- Hollow History														

	Fertilized	Un-Fertilized
SOM	6.o	7.3
CO2 Resp.	47.0	102.1
Available N	67.5 lbs/ac	73.3
Available P	18.9	27.2
Available K	130 ppm	236
Available S	16.23 ppm	27.92

Water Infiltration Times

	1 st Run	2 nd Run
Point #1	7 min 54 sec	Not done
Point #11	35 sec	5 min 28 sec
Point #12	10 plus minutes	Not done

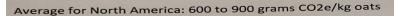
*Please Note: On most of the other farms it was very rare to have a measurement time of less than 10 minutes.

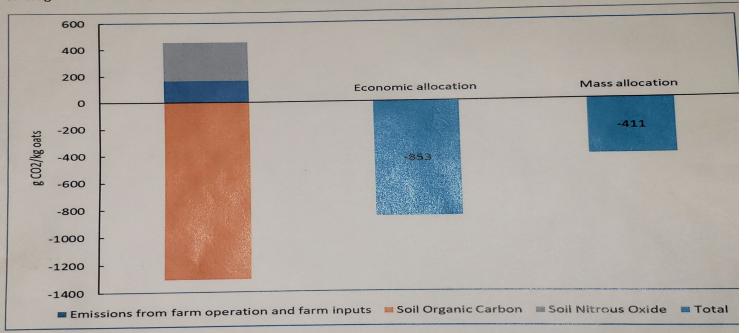
Ag Testing - Consulting

Lab No. : 4340

Haney - Soil Health Analysis Contd. Nutrient Quantity Available for Next Grop Nitrogen Savings by using the Haney Test Nitrogen, /bs N/A 58.1 Traditional evaluation, lbs N/A 30.5 Phosphorue, Ibs P2Os/A i 9.9 Haney Test N evaluation, Ibs N/A 59.1 Potassium, Iba K₂O/A Nitrogan Difference, lbs N/A 135.6 276 Nutrient Value, S/A 112.77 N savings, \$/A 17.66

Recommendations In Actual Pounds of Plant Nutrients per Acro


N Credit : Cover Crop - 40 Sub-Soils :


g Wheet BU/A	Crop	(Heney) Canola, BU/A
50	Yleid	40
0	Nitrouon N	10
35		
u	Potassium K ₂ O	a a
0	Sulfur S	ā
σ	Zinc Zn	ā
0	Megnesium Mo	å
0	Iron Fa	
0	Manganase Mo	 D
0	Copper Cu	Ď
	50 0 35 0 0 0 0 0 0	50 Yield ○ Nifrogon N 35 Phosphorus P>O 0 Potassium K₂O 0 Sutfur S 0 Zinc Zn 0 Magnesrum Mg 0 Iron Fe 0 Mangenese Mn

Reviewed By : Lance Gupderson	5/29/20	1.6	Copy : 1	Page 4 of 4
Bus: 308-234-2418	web site		4907 Cherry Av	o., P.O. Bax 788
Fax: 305-234 1940	www.wardiah.com			iska 68848-0788

Richards Farm Report Carbon footprint analysis of oat production Provided by Soil Metrics, LLC Fort Collins, CO 80522

Net score: -758 to -853 grams CO2e/kg oats

Practices that make a carbon footprint worse:

- Over-application of fertilizers leads to higher soil nitrous oxide emissions
- Tillage cause organic matter in soil to decompose, leading to carbon dioxide emissions
- Frequent (e.g. every other year or every 2 years) fallow periods reduce opportunities to build organic matter in soil.

Practices that improved the carbon footprint of the operation:

 Grazing livestock on crop stubble, or integrating summer livestock grazing/forage crops helps to build organic matter in soil, leading to carbon sequestration. It can also help to reduce the need for manufactured fertilizers for crops that follow grazing periods as it builds soil nitrogen levels.

Believing IS Seeing

Agriculture was never meant to be done without livestock

Reflections turn observations into insight. -John Maxwell

Illinois could feed approx 3 million beef cows over each winter on 11 million acres of post-harvest corn stalks. Saskatchewan has approximately 1 million cows and 64 million acres of crop land.

Cover Crop Blend 2018

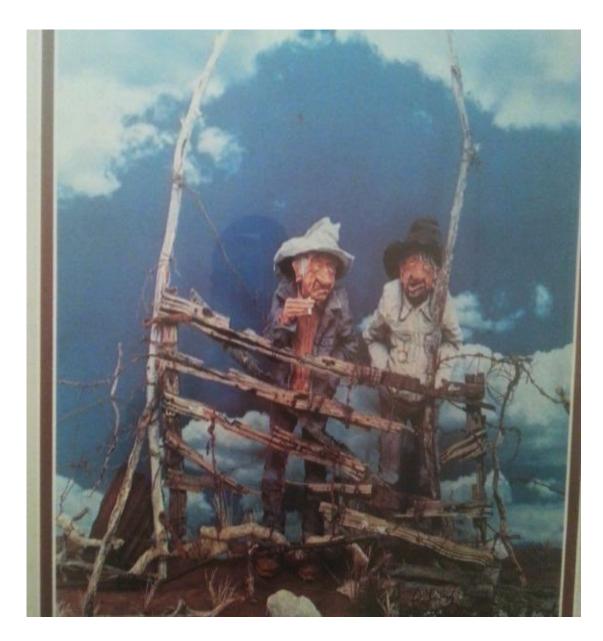
Goal of 2-3 year persistence for economy, soil health, resilience, less work
-Grazed in year one and options in subsequent year depending on our needs.
-A type of polyculture. A biological primer to address concerns in soil health and forage gaps.

Sweet Clover 3 lbs/acre	Chicory	.4 lb/acre
• Alfalfa 1lb/acre	Phacelia	.2 lb/acre
Red Clover .5 lb/acre	Buckwheat	2 lbs/acre
Italian Rye Grass 3 lbs/acre	Sunflower	3 lbs/acre
Annual Rye Grass 2 lbs/acre	Winter Triticale	20 lbs/acre
Festulolium 1lb/acre	Hairy Vetch	4 lbs/acre
Brassica 1 lb/acre	Oats/Barley	15 lbs/acre
• Plantain .4 lb/acre	Peas	10 lbs/acre
Misc grass 1b/acre	Misc (incl. mille	t) 1 lb/acre

Second year grazing of our cover crop

- Sweet clover
- Red clover
- Alfalfa
- Plantain
- Annual/Italian Ryegrass
- Winter Triticale
- Hairy Vetch
- Chicory

-silage 8 mt/ac -50 grazing days/ac. -Seeded winter triticale and hairy vetch in September. -Or annual grain the following spring.



The difficulty lies, not in the new ideas, but in escaping the old ones.

John Maynard Keynes

If we keep doing what we're doing we're going to keep getting what we're getting. -Steven Covey

